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SUMMARY

The stability of flow in a lid-driven cavity is investigated using an accurate numerical technique based
on a hybrid scheme with spectral collocation and high-order finite differences. A global stability analysis
is carried out and critical parameters are identified for various aspect ratios. It is found that while there
is reasonable agreement with the literature for the critical parameters leading to loss of stability for the
square cavity, there are significant discrepancies for cavities of aspect ratios 1.5 and 2. Simulations of
the linearized unsteady equations confirm the results from the global stability analysis for aspect ratios
A=1,1.5 and A=2. Copyright q 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The flow in a lid-driven cavity (LDC) has been extensively used as a test case for the development
of numerical algorithms for the Navier–Stokes equations and there are many papers Burgraff [1],
Ghia et al. [2], Schrieber and Keller [3] that describe the various flow features. In [2] results for
a wide range of Reynolds numbers up to 10 000 are presented. In the singular LDC problem, the
one studied here, there is a discontinuity in the velocity boundary conditions at the corners where
the lid moves, and in more recent work Botella and Peyret [4], Auteri et al. [5] have attempted to
obtain accurate solutions to the steady flow problem by incorporating the nature of the singularity
at the corners into their numerical algorithms. One of the interests from the theoretical perspective
is to obtain an insight into solution properties of the steady flow in the limit so that the Reynolds
numbers become large. Solutions of the steady problem for Reynolds numbers up to 20 000 have
been obtained by Gajjar and Azzam [6], Azzam [7], Erturk et al. [8] and show the core flow
tending to a Prandtl–Batchelor type of flow, see Batchelor [9], with closed streamlines and with
the core vorticity tending to a uniform value.

∗Correspondence to: J. S. B. Gajjar, School of Mathematics, The University of Manchester, Alan Turing Building,
Manchester M13 9PL, U.K.

†E-mail: j.gajjar@manchester.ac.uk

Copyright q 2009 John Wiley & Sons, Ltd.



828 V. B. L. BOPPANA AND J. S. B. GAJJAR

The focus of the current work is to investigate the linear stability of the two-dimensional LDC
flow, for various aspect (depth/width) ratios, using an accurate numerical method that employs
Chebyshev collocation in one direction together with high-order finite differences in the other
direction. The same numerical technique is employed by Azzam [7] for the cavity flow, by Gajjar
and Azzam [10] to compute the steady flow past an array of cylinders for large Reynolds numbers
and by Korolev et al. [11] for the supersonic flow past a compression ramp for large ramp angles.
One of the reasons why the technique has been successfully used in a wide range of problems
cited above is that the Newton linearization of the nonlinear equations leads to a linear system
that has a block-pentadiagonal structure, and this is solved directly using an efficient solver.

The stability of the LDC flow has been investigated by a number of authors, see Gustafson and
Halasi [12, 13], Goodrich et al. [14]. They find from the simulations of the full time-dependent
Navier–Stokes equations that the steady flow loses stability via a Hopf bifurcation. To obtain
accurate values of the critical parameters for loss of stability via simulations of the unsteady
equations is in general a difficult task and computationally expensive. In recent work Auteri
et al. [15] have taken account of the corner singularities in the LDC problem and via simulations
managed to narrow the range of values of the critical Reynolds number when a Hopf bifurcation
takes place. Poliashenko and Aidun [16] have reviewed a number of different techniques that can
also be used to study the stability of the steady state and to compute bifurcations. In [16, 17],
among others, the two-dimensional eigenvalue problem is solved numerically and the critical
Reynolds numbers and frequencies from the eigenvalue analysis are compared with simulations
of the unsteady equations.

One of the aims of the current work is to obtain accurate value of the critical parameters for
loss of stability for cavity aspect ratios of 1, 1.5 and 2. A survey of the literature suggests that
the range of critical Reynolds numbers identified when the flow becomes unstable for the square
cavity is quite varied, from 7704 in [18] to 8031.93 in [19]. For aspect ratio of 1.5 there is a huge
discrepancy between the results of [16] and [20]. Likewise there are not many results for the cavity
of aspect ratio 2.

In the present study we have used a robust and accurate numerical technique to first obtain
the steady flow. The same technique is used to investigate the stability of the flow by solving the
generalized two-dimensional eigenvalue problem obtained from the linearized unsteady equations.
The stability results are confirmed also via simulations of the linearized unsteady equations for
the aspect ratios studied.

In Section 2 we consider the governing equations. The details of the stability analysis and
numerical techniques used are discussed in Sections 3 and 4. In Section 5 we present our numerical
results and compare them with the previous work.

2. GOVERNING EQUATIONS

The non-dimensional equations that describe the two-dimensional, incompressible and unsteady
fluid flow in a LDC in terms of a stream function (�) and vorticity (�) are

∇2� = −� and

�t +�y�x −�x�y = 1

Re
∇2�

(1)
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Figure 1. Sketch of the lid-driven cavity with boundary conditions.

Here Re is the Reynolds number defined as Uw/�, where � is the kinematic viscosity of the fluid,
U is the velocity of the lid, and w is the width of the cavity that are used to non-dimensionalize
the velocity and length-scale variables, respectively. The boundary conditions (see Figure 1) are
given by

� = 0 and �x =0 for x=0, 0�y�A

� = 0 and �x =0 for x=1, 0�y�A

� = 0 and �y =0 for y=0, 0�x�1

� = 0 and �y =1 for y= A, 0�x�1

(2)

where A is the aspect ratio of the cavity and is defined as

A= depth of the cavity

width of the cavity
= d

w

In the present study, three different aspect ratios are considered, A=1.0,1.5 and 2.0.

3. HYDRODYNAMIC STABILITY ANALYSIS

To determine the stability we used a normal mode analysis according to which the total flow
(�(x, y, t) and �(x, y, t)) are expressed as

�(x, y, t) = �(x, y)+��̃(x, y)e�t and

�(x, y, t) = �(x, y)+��̃(x, y)e�t
(3)
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where the barred quantities denote the steady flow and the terms multiplied by � the perturbation.
Substituting the above form into Equations (1) and (2), assuming that � is small and collecting
the like order terms will give rise to a set of equations for the steady flow and the linear stability
equations.

Steady equations and their boundary conditions:

∇2�=−� (4a)

�y�x −�x�y = 1

Re
∇2� (4b)

� = 0 and �x =0 for x=0, 0�y�A

� = 0 and �x =0 for x=1, 0�y�A

� = 0 and �y =0 for y=0, 0�x�1

� = 0 and �y =1 for y= A, 0�x�1

(4c)

Stability equations and their boundary conditions:

∇2�̃=−�̃ (5a)

��̃+�y�̃x −�x �̃y+�̃y�x −�̃x�y = 1

Re
∇2�̃ (5b)

�̃ = 0 and �̃x =0 for x=0, 0�y�A

�̃ = 0 and �̃x =0 for x=1, 0�y�A

�̃ = 0 and �̃y =0 for y=0, 0�x�1

�̃ = 0 and �̃y =0 for y= A, 0�x�1

(5c)

Initially, the steady Equations (4) are solved for � and �. The obtained steady solution is then
substituted into (5), which is a two-dimensional partial differential eigenvalue problem. After
discretization this leads to a generalized eigenvalue problem that is solved to find �̃, �̃ and �
for different Re. In general, the eigenvalues � can be real (�=�r ) or complex (�=�r +�i ). The
stability of the flow depends on the sign of the largest value of �r . For the flow in a LDC, at one
particular value of Re, a pair of complex conjugate values of � crosses the imaginary axis. This
leads the basic flow to lose stability and a one parameter family of periodic solution bifurcates from
the stationary solution. Such a bifurcation is called a Hopf bifurcation. The numerical technique
used to determine the basic flow and its stability is explained in the next section.
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4. NUMERICAL METHOD

Fourth-order central differencing in the x-direction and Chebyshev collocation in the y-direction
are used for discretizing equations (4) and (5). Accordingly, the first and second derivatives in the
x-direction are differenced as

(�x )i, j = 1

12h
(�i−2, j −8�i−1, j +8�i+1, j −�i+2, j ) and

(�xx )i, j = 1

12h2
(−�i−2, j +16�i−1, j −30�i, j +16�i+1, j −�i+2, j )

(6)

where suffices i, j refer to points xi , y j . Here xi = xa+ ih, i=0,1, . . . ,m and h=(xb−xa)/m
(where xa =0 and xb=1). In the y-direction, the physical domain of y is mapped to Chebyshev
space i.e. y∈[0, A]→ z∈[−1,1] where

z j =cos

(
j�

n

)
, j =0,1, . . . ,n and y j = A

(
z j +1

2

)
Hence the first and second derivatives in the y-direction are given by

(�y)i, j =
n∑

k=0
d1 j,k�i,k and

(�yy)i, j =
n∑

k=0
d2 j,k�i,k

(7)

Here d1 j,k and d2 j,k are the elements of the Chebyshev collocation differentiation matrix ofD and
D2, respectively, (for the details of the matrix D, refer Canuto et al. [21]) and � can be �, �, �̃
and �̃. Let M=m+1 and N =n+1 be the total number of grid points in the x- and y-directions,
respectively.

Substituting Equations (6) and (7) in basic flow equations (4) gives rise to a set of discrete
equations which are nonlinear. These are linearized using a Newton–Raphson technique. For this
purpose, let �i, j =�i, j +Hi, j and �i, j =�i, j +Gi, j , where �i, j ,�i, j are some initial guesses
and Hi, j ,Gi, j are corresponding correction factors such that |Hi, j |, |Gi, j |�1. Thus the linearized
steady equations, after ignoring the smaller order nonlinear terms and collecting the like terms
will be of the form

A
(p)
Up−2+B

(p)
Up−1+C

(p)
Up+D

(p)
Up+1+E

(p)
Up+2=R(p), 1�p�M (8)

where the matrices A to E are of size 2N×2N and they arise due to the enforcement of equations
at the Chebyshev collocation nodes in the y-direction. Up is a vector of correction factors of
stream function (Hp) and vorticity (Gp) at each node in the x-direction i.e.

Up =
(
H p

G p

)
=(Hp,0, . . . ,Hp,n,Gp,0, . . . ,Gp,n)

T

A block penta-diagonal structure arises as a result of discretizing the equations with fourth-order
central differences in the x-direction. The linear system (8), when written in matrix form, results in

LU=R (9)
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with U=(U1, . . . ,UM )T. Equation (9) is solved for U using a direct solver that exploits the
sparsity of the block penta-diagonal structure of the matrix L.

The obtained stationary solution is used in Equation (5) that after discretization and collecting
the like terms gives rise to

Ã(p)Hp−2+B̃(p)Hp−1+C̃(p)Hp+D̃(p)Hp+1+Ẽ(p)Hp+2=�R̃(p)Hp, 1�p�M (10)

where Hk is a vector similar to Uk containing the perturbation stream function and vorticity.

Matrices Ã(p) to Ẽ(p) are similar to A
(p)

and E
(p)

except that � and � in them have to be replaced
by � and �. Equation (10) can be written in the form of a generalized eigenvalue problem given by

L̃H=�R̃H (11)

where R̃ is a diagonal matrix and H=[H1,H2, . . . ,HM−1,HM]T. Equation (11) is solved for
eigenvalues � and eigenvectors H using ARPACK [22].

4.1. Implementation of boundary conditions for vorticity

We used an integral constraint method to enforce the no-slip boundary conditions. Accordingly,
Equation (4a) is integrated with respect to y, which then gives

[�̄y]y0+
∫ y

0

(
�2�̄
�x2

+�̄

)
dy=0

Evaluating this at y= A and using the conditions of �̄y given in Equation (4c), we get

1+
∫ A

0

(
�2�̄
�x2

+�̄

)
dy=0 (12)

This gives the vorticity boundary condition at y=0. For y= A and 0 �x�1, the boundary condition
for vorticity is obtained by double integrating Equation (4a) with respect to y and then using the
conditions, �(y= A)=�(y=0)=�y(y=0)=0, which then gives∫ A

0

[∫ y

0

(
�2�̄
�x2

+�̄

)
dy

]
dy=0 (13)

At x=0 and 1, Equation (4a) is used with �x =0 to eliminate the points outside the domain. The
boundary conditions are handled in a similar manner for stability equations.

4.2. Validation of numerical method

In order to validate the techniques described above, extensive tests were carried out with benchmark
problems. For the steady version of the code, we solved the steady LDC problem given by
Equations (4) and compared our results with Ghia et al. [2]. For example, in Figure 2 we show
contours of the streamlines and vorticity for Re=7500, for a grid size with N =97,M=257, and
in Figure 3 the centerline plots of the velocity are compared with the data from [2]. Both are in
excellent agreement. Further grid size checks and other more extensive comparisons of the data
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Figure 2. Contours of the (a) stream function and (b) vorticity for Re=7500 for the LDC
flow. Contour levels shown are as in [2].

Figure 3. A comparison of the centerline velocities u( 12 , y),v(x, 1
2 ) (solid lines) for

Re=7500 with data (symbols) from [2].

for the LDC flow, for a wide range of Reynolds numbers, generated using these techniques for
both second- and fourth-order differencing in the x-direction are given in [7].

To test the eigenvalue solver using the discretization techniques described above, we again
solved a number of different benchmark problems. In particular, the method was successfully
used to obtain eigenvalues for two fourth-order eigenvalue problems, which are the biharmonic
eigenvalue problem and the buckling plate problem discussed by Bjørstad and Tjøstheim in [23]
and which are described below.

The eigenvalue problem for the biharmonic operator is

�=∇2�, ∇2�=��, 0<x, y<1, �= ��

�n
=0 on the boundary (14)
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Table I. Comparison of the smallest eigenvalue obtained by Bjørstad
and Tjøstheim [23] in this study.

M N =13 N =26

Biharmonic eigenvalue problem

Present study 51 1294.93636 1294.93537
101 1294.93500 1294.93400

Bjørstad and Tjøstheim [23] 1294.93398

Buckling plate eigenvalue problem

Present study 51 52.3443114 52.3443114
101 52.3446434 52.344644

Bjørstad and Tjøstheim [23] 52.3446913
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Figure 4. Eigenfunction corresponding to the smallest eigenvalue of the biharmonic eigenvalue problem
(left) and buckling plate eigenvalue problem (right).

and the eigenvalue problem for the buckling plate problem is

w=∇2�, ∇2�=−��, 0<x, y<1, �= ��

�n
=0 on the boundary (15)

Both these problems are solved in [23] using a highly accurate spectral Legendre–Galerkin method.
The smallest eigenvalue we obtain is compared with that given in [23] in Table I. It can be observed
from this table that with an increase in N as well as M , the smallest eigenvalue in the present study
is found to be approaching the eigenvalue in [23]. With the grid sizes shown in the table agreement
up to the fourth decimal place with the values given in [23] are obtained. Further increase in
accuracy may be achieved by using a finer grid. The eigenvectors of (14) and (15) corresponding
to the eigenvalue on the finest grid size in Table I are shown in Figure 4.

As the eigenvalues of the above-discussed test problems are in good agreement with the literature,
the numerical method (as explained in Section 4) is implemented on the LDC and the obtained
results are discussed in the next section.
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5. GLOBAL STABILITY ANALYSIS: RESULTS AND DISCUSSION

Numerical experiments were carried out on the LDC with aspect ratios A=1.0, 1.5 and 2.0 to
determine the critical Reynolds number, Rec. The algorithm used was

(a) The stationary solution for a given Re is computed from Equation (4).
(b) This stationary solution is substituted in Equations (5) for computation of eigenvalues.
(c) If there is no eigenvalue to the right of the real axis, the Re value is increased and then we

return to (a).
(d) If a pair of eigenvalues has a positive real part, then the value of Re is reduced and return

to (a).
Steps (a), (b), (c) or (a), (b), (d) are repeated until there exists only one pair of eigenvalues

that has zero real part for which the corresponding Re is termed as Rec and the eigenvalues
as critical eigenvalues �c.

Let � j−1 be the largest real part of the eigenvalue whose sign is negative at Re j−1 and � j be the
largest real part of the eigenvalue whose sign is positive at Re j . Then the following relation [24]
was used to choose the next value of Re:

Re= Re j−1+ (Re j −Re j−1)� j−1

� j−1−� j

The steps in the above-mentioned algorithm were then followed to determine if this is the critical
Reynolds number at which the Hopf bifurcation occurs.

This algorithm was implemented on various grid sizes with 61�N�201 and 251�M�501 in
order to check the convergence of Rec. The computations were carried out until the convergence
was obtained in the critical values.

Contours of the streamlines and vorticity, taken from the finest grid, for the base flow are shown
in Figures 6, 7 and 16. Although the stream function contours are smooth, the vorticity contours
show minute wiggles (for example, the −2. level for A=1.5), which can be shown to diminish if
even finer grids are used. With our technique it is not possible to indefinitely keep on increasing
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N=81
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N=81
N=61

Figure 5. Critical values’ dependence on gridsize (A=1.0).
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Figure 6. Contours of base flow at Rec=8026.6 for A=1.0 (M=501, N =121):
(a) streamlines and (b) equi-vorticity lines.
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Figure 7. Contours of base flow at Rec=5326.9 for A=1.5 (M=501, N =141):
(a) streamlines and (b) equi-vorticity lines.

N because for very large N the Chebyshev differentiation matrices are prone to becoming badly
conditioned, and this can generate additional numerical errors. Our results also indicate that the
stationary flow first needs to be computed more accurately before being used in the global stability
analysis.

The critical values of �c and Rec for varying grid sizes are tabulated in Tables II, III and IV and
shown in Figures 5, 10 and 15. In Figures 8, 9, 13, 14, 18 and 19 the real and imaginary parts of the
stream function and vorticity perturbation eigenvectors at the critical values are shown. These have
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Table II. Numerical results for A=1.0 where the first Hopf bifurcation occurs.

N =61 N =81 N =101 N =121

M Rec �c Rec �c Rec �c Rec �c

251 8069.3 ±2.8065 8075.2 ±2.807i 8075.4 ±2.8071i 8075.4 ±2.8071i
301 8056.7 ±2.8150 8055.4 ±2.8151i 8055.4 ±2.8152i 8055.4 ±2.8151i
351 8051.3 ±2.8201 8042.6 ±2.8198i 8042.5 ±2.8198i 8042.5 ±2.8198i
401 8045.4 ±2.8241 8034.7 ±2.8226i 8034.7 ±2.8226i 8034.7 ±2.8226i
451 8027.9 ±2.8254 8029.8 ±2.8244i 8029.8 ±2.8244i 8029.8 ±2.8244i
501 — — 8026.6 ±2.8256i 8026.6 ±2.8256i 8026.6 ±2.8256i

Table III. Numerical results of A=1.5 where the first Hopf bifurcation occurs.

N =101 N =121 N =141

M Rec �c Rec �c Rec �c

251 5296.6 ±2.1352i 5293.3 ±2.1352i 5293.2 ±2.1352i
301 5313.4 ±2.1365i 5309.5 ±2.1365i 5309.5 ±2.1365i
351 5321.9 ±2.1372i 5317.6 ±2.1372i 5317.6 ±2.1372i
401 5326.7 ±2.1376i 5322.2 ±2.1376i 5322.3 ±2.1377i
451 5329.6 ±2.1379i 5325.0 ±2.1379i 5325.1 ±2.1379i
501 5331.4 ±2.1380i 5326.8 ±2.1380i 5326.9 ±2.1381i

Table IV. Numerical results of A=2.0 where the first Hopf bifurcation occurs.

N =141 N =161 N =181 N =201

M Rec �c Rec �c Rec �c Rec �c

251 5904 ±3.80299i 5901 ±3.80252i 5901 ±3.80263i 5901 ±3.80261i
301 5886 ±3.80973i 5882 ±3.80927i 5882 ±3.80937i 5882 ±3.80935i
351 5877 ±3.81332i 5872 ±3.81285i 5873 ±3.81299i 5873 ±3.81298i
401 5871 ±3.81533i 5867 ±3.81493i 5867 ±3.81502i 5867 ±3.81501i
451 5868 ±3.81658i 5863 ±3.81614i 5864 ±3.81628i 5864 ±3.81267i
501 5866 ±3.81738i 5861 ±3.81695i 5861. ±3.81704i 5861 ±3.81702i

been normalized so that the maximum absolute value of the function is unity. Though the steady
flow contours are relatively smooth, the eigenvector plots do show more wiggles, particularly for
the larger aspect ratios. These again can be shown to decrease with finer grids.

In Figure 8, an alternate band of positive and negative streamlines can be observed in the
perturbation eigenvectors all along the left boundary. A similar behavior is also observed clearly in
the case of real and imaginary parts of vorticity eigenvector in Figure 9. This kind of pattern was
observed by Auteri et al. [15] for aspect ratio A=1 in the time sequence of fluctuating vorticity
field at Re=8125, the value above the critical Reynolds number. They stated that this could be due
to shear layer instability due to which the primary vortex is entirely separated from the secondary
vortex and the cavity walls.
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Figure 8. Contours of the (a) real and (b) imaginary parts of the stream function eigenvector at Rec=8026.6
for A=1.0 (M=501, N =121). Contour levels shown are in increments of 0.1 with negative contour

values shown by the dashed lines.
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Figure 9. Contours of the (a) real and (b) imaginary parts of the vorticity function eigenvector at
Rec=8026.6 for A=1.0 (M=501, N =121). Contour levels shown are in increments of 0.1 with negative

contour values shown by the dashed lines.

Some additional points that may be inferred from the data are given below separately for each
aspect ratio.

Case 1 (A=1.0). It is noticed from Figure 5 that while Rec decreases with increase in M for a
fixed N ,�(�c) is found to be increasing very slowly. For each of the grid values given in Table II,
the number of eigenvalues calculated is 100 using 1000 basis vectors and a shift value of �=3.0.
It was found that the Rec values for N =61,M=501 were affected by the presence of a spurious
eigenvalue (giving Rec=7849) and for this reason it is not tabulated.

Figure 11(a) shows the eigenvalue spectrum at the critical Reynolds number. The eigenvalues
crossing the imaginary axis and that cause the flow in the LDC to be neutrally stable are clearly
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Figure 10. Critical values dependence on grid size (A=1.5).
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Figure 11. Plots showing (a) 100 eigenvalues and (b) few eigenvalues near the imaginary axis at
Rec=8026.6 for A=1.0 (M=501, N =121).

shown in Figure 11(b). A cubic spline fit of the obtained numerical data estimated the value of
the critical parameter corresponding to zero mesh size (Rec(h=0.001)) as 8020.1.

Reducing N values further created additional problems in that the base flow could not be
computed sufficiently accurately and problems with convergence were experienced for increasing
Reynolds numbers. Clearly the eddy boundaries cannot be accurately resolved with a reduced
number of grid points and this is one of the reasons for this difficulty.

Case 2 (A=1.5). The values of �c and Rec for different grid sizes tabulated in Table III were
obtained by calculating 200 eigenvalues using 1000 basis vectors with �=3. It can be inferred
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Figure 12. Plots showing (a) 200 eigenvalues and (b) few eigenvalues near the imaginary axis at
Rec=5326.9 for A=1.5 (M=501, N =141).
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Figure 13. Contours of the (a) real and (b) imaginary parts of the stream function eigenvector at
Rec=5326.9 for A=1.5 (M=501, N =141). Contour levels shown are in increments of 0.1 with negative

contour values shown by the dashed lines.

from this table that for each M, Rec remained the same for N =121 and 141 but differed for
N =101 unlike �c, which remained the same (except for M=401 and 501) for all values of N .
This is clearly illustrated in Figure 10. Figure 10(a) shows that for a constant N , as M increases,
there is a gradual increase in Rec values. An interesting feature is that this behavior of Rec with
increase in M is opposite when compared with that of A=1.0. There happened to be a very
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Figure 14. Contours of the (a) real and (b) imaginary parts of the vorticity eigenvector at Rec=5326.9
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slight increase (only in the third decimal place for M=401 and 501, N =141) in the values of
�(�c) with increase in M for a constant N as depicted in Figure 10(b). Figure 12(a) illustrates
the eigenvalues computed to determine the critical parameter for the finest grid size. The Hopf
bifurcation is characterized by a pair of complex conjugate eigenvalues crossing the imaginary axis
and is shown clearly in Figure 12(b). The contours of the perturbed flow that are the eigenvectors
are shown in Figures 13 and 14. Using the obtained computational results, the critical parameter
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Figure 16. Contours of (a) stream function and (b) vorticity for the base flow at Rec=5861
for A=2.0 (M=501, N =201).

–1.5 –1 –0.5 0
–4

–3

–2

–1

0

1

2

3

4

–0.04 –0.02 0 0.02 0.04
–4

–3

–2

–1

0

1

2

3

4

Figure 17. Plots showing the 500 eigenvalues and (right) a closeup of the eigenvalues near
the imaginary axis at Rec=5861 for A=2.0 (M=501, N =201).
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Figure 18. Contours of the real (left) and imaginary parts (right) of the perturbation stream function
eigenvector at Rec=5861 for A=2.0 (M=501, N =201). Contour levels shown are in increments of 0.1

with negative contour values shown by the dashed lines.

corresponding to the finest mesh size Rec(h=0.001) is estimated to be 5331.2 by means of a
cubic spline fit.

Case 3 (A=2.0). The values of Rec and �(�c) obtained for different grid sizes are given in
Table IV, which were obtained by computing 500 eigenvalues with 1500 basis vectors and �=6.
It is to be noted here that choosing a smaller value of � does not give the most unstable eigenvalue
and instead the results point to a critical value of �c=±2.103i. On the other hand, our simulations
(see later) suggested a different frequency more in agreement with the value calculated by taking
larger values of �. The dependence of critical values on grid size is depicted in Figure 15. The
contours of streamlines and vorticity of the base flow and its perturbed flow at the critical Reynolds
number are illustrated in Figures 16, 18 and 19 corresponding to the grid size of N =201 and
M=501. We observe the primary, secondary and tertiary vortices from the top to the bottom of the
cavity in Figure 16(a). The 500 eigenvalues that were calculated to compute the critical parameter
are shown in Figure 17(a). In Figure 17(b), the eigenvalues that correspond to the Hopf bifurcation
are clearly shown. Two pairs of alternate rotating vortices are observed on the left side of the top
portion of the cavity in Figure 18. The contours of vorticity eigenvector in Figure 19 also clearly
show a band of alternate positive and negative values of vorticity along the top left boundary. The
wiggles in the central portion of the primary and secondary cavities in these figures indicate the
insufficient grid resolution. The cubic spline fitting of the obtained numerical results (M=251 to
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Table V. Computed values of frequencies fs from simulations and fg
from the global stability analysis.

A N×M Rec fs fg

1.0 81×501 8026.7 0.4480 0.4467
1.5 141×501 5326.9 0.3400 0.3398
2.0 161×501 5861 0.6061 0.6075

501 and N =201) estimated the value of Rec (h=0.001) as 5790, whereas linear extrapolation
yields 5847.5.

Linear temporal simulations were also performed wherein the frequencies obtained from the
global stability analysis ( fg =�(�c)/2�) are compared and explained in the following section.

5.1. Linear temporal simulation: results and discussion

Although the global stability analysis on various grid sizes for the three configurations exhibited
a gradual increasing trend in �(�c), with increase in M and for any given N , the difference in the
successive values is small, see Figures 5(b), 10(b) and 15(b). Hence, the linear temporal simulation
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Figure 20. Evolution of u with t (left) and a snapshot of the same signal (right) for A=1.0, M=501,
N =81, Rec=8026.7 ((a),(b)) and A=1.5, M=501, N =141, Rec=5326.9 ((c),(d)).

was performed on one grid size (as given in the figure captions) from each of the configurations.
Before proceeding with the simulation, a numerical stability check was also performed to ensure
that our simulation results were completely devoid of numerical instabilities. For the simulations
the linearized unsteady Navier–Stokes equations (5) were solved. A disturbance of Gaussian form
in space and time with

�̃(x, y=0, t)=Ce−50(t−1)2e−20(x−(1/2))2, t>0

was imposed and allowed to evolve. After an initial time step, a second-order in-time fully implicit
scheme was used and the same spatial discretizations as described earlier for the global analysis
were used. In order to choose a proper time step to compute the frequency of the flow in the
LDC, at first simulations were carried out up to time t=100 by using different time steps on
a grid size of 81×251 at Re=8000 for A=1.0. Goodrich et al. [14] have mentioned that the
velocity component at a point serves as one of the dynamic measures to track the convergence to an
asymptotic state and to understand the qualitative nature of that state. For this reason, the horizontal
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Figure 21. Power spectral density (left) and phase portrait (right) of u with 	=0.75 for A=1.0, M=501,
N =81, Rec=8026.7 ((a),(b)) and A=1.5, M=501, N =141, Rec=5326.9 ((c),(d)).

velocity denoted by ‘u’ at an arbitrary node is chosen as a dynamic indicator. By computing the
values of u at each time interval for different time steps, it was found that �t=0.025 was sufficient
to capture the fundamental frequency of the flow.

As mentioned in Section 3, at the Hopf bifurcation, a one parameter family of periodic solution
bifurcates from the stationary solution. This implies that the solution has some time-periodic
pattern with a certain frequency. The linear temporal simulation was carried out to determine the
fundamental frequency ( fs), shown in Table V, which should ideally be close to that obtained
from the global stability analysis ( fg =�(�c)/2�). Therefore the simulations were performed up
to t=500 units for A=1.0 and 1.5. The evolution of u with time t at the respective values of Rec
is shown in Figure 20(a) and (c). Fourier analysis of the obtained data was done to compute the
fundamental frequency. This is shown in the graphs of power spectral density versus frequency
in Figure 21. The closed form of the phase portraits in these figures further confirms the periodic
nature of the solution. For A=2 it was found that there was a large transient response, see Figure 22
and simulations needed to be conducted for a longer time, t=1500 units. Again the power spectral
density plots in Figure 23 not only confirm the dominant global frequency predicted by the stability
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A=2.0, M=501, N =161, Rec=5861.
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Figure 23. Power spectral density (a) and phase portrait (b) of u with 	=0.75 for
A=2.0, M=501, N =161, Rec=5861.

analysis but the power spectrum also shows significant peak for low frequencies emanating from
the transient response.

The stream function perturbation at the Hopf point may be expressed as

�̃= A(�̃r cos(�i t+
)−�̃i sin(�i t+
))

where �̃r , �̃i are the real and imaginary parts of the eigenvector, and A,
 are arbitrary amplitude
and phase constants, respectively. By fixing the phase and amplitude at one instant in time to match
with the simulation data, the results from the simulations for the rest of the cycle are compared
with the predictions from the global analysis in Figures 24, 25 and 26 for the different aspect
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Figure 24. Comparisons of simulations (top row) and global analysis predictions (bottom row) for one
period T in intervals of T/4 from left to right for aspect ratio A=1 and Re=8026.7 with M=501,N =80.

Contour levels are in intervals of 0.1, with negative levels shown by dashed lines.

ratios. The predicted comparisons agree very well with the simulations for A=1 and A=1.5 and
the influence of the transients may be the reason for the slight differences for A=2 (Figure 26).

The computational results of A=1.0, 1.5 and 2.0 are compared with the available literature and
are discussed in the next section.

5.2. Comparison of results with the literature

Table VI shows the values of Rec and �c obtained by various researchers, the methods they adopted
and also the grid/mesh sizes they have used.

For the case of A=1.0, it can be inferred that the value of Rec varies between 7704 and
8050 and the value of �(�c) varies from 2.76 to 2.86 (the accuracy of �(�c)=3.85 obtained by
Cazemier et al. was questioned even by them as it significantly differed from their direct numerical
simulation (DNS) approach). Our critical parameter Rec=8026.6 and the associated value of
�(�c)=2.826 corresponding to finest grid size 121×501 lie very much within the range mentioned
above. In terms of % of relative difference, the Rec value differs by 0.29% with Bruneau and Saad
[27] and with Peng et al. [18], it differs by 4.19%. On the other hand �(�c) differs by 1.18% with
Poliashenko and Aidun [16] and 2.39% with Tiesinga et al. [26]. It is observed in Figure 5(b) that
there is a very slight change (only in the second and third decimal) in �(�c) with increase in M .
A similar independence of critical eigenvalue with grid size was even observed by Fortin
et al. [17].

A striking contrast in the values of Rec corresponding to A=1.5 can be observed in Table VI.
This table also shows the limited amount of work done for the A=1.5 case. The relative differ-
ence of Rec in terms of % is 26% with Poliashenko and Aidun [16] and 6.11% with Abouhamza

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2010; 62:827–853
DOI: 10.1002/fld



GLOBAL FLOW INSTABILITY IN AN LDC 849

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 10

0 0.2 0.4 0.6 0.8 1

0

0 0.2 0.4 0.6 0.8

1

1

0

0 0.2 0.4 0.6 0.8 1

0

0 0.2 0.4 0.6 0.8 1

T simulation

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

T/4 simulation

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

T/2 simulation

 0  0  0  0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

3T/4 simulation

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

T global

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

T/4 global

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

T/2 global

 0 0  0  0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

3T/4 global

Figure 25. Comparisons of simulations (top row) and global analysis predictions (bottom row) for
one period T in intervals of T/4 from left to right for aspect ratio A=1.5 and Re=5326.9 with
M=501,N =141. Contour levels are in intervals of 0.1, with negative levels shown by dashed lines.

and Pierre [20]. Similarly �(�c) differs by 22% with former and 31.3% with the latter. This
significant difference of our results with the literature may be attributed to the limited grid
checks done by these researchers as they used a single mesh size to determine the critical values.
Figure 10(a) shows the difference in the values of Rec for the coarse and fine grid sizes used in
our study. This suggests that rigorous grid checks have to be carried out to determine the critical
parameters.

Table VI shows the limited work done even in the case of A=2.0. We observe that the critical
values differ significantly. In terms of % of relative difference, our Rec value differ by 17% with
Goodrich et al. [14] and 2.6% with Abouhamza and Pierre [20], whereas �(�c) differ by 40% with
the former and 22.3% with the latter. Goodrich et al. performed the numerical simulation on an
impulsively started LDC at Re=5000 for two different grid sizes to find the Hopf bifurcation. They
found the asymptotic periodic state with period 2.469�T�2.484 (T =2�/�(�c)) on a grid size of
48×96 and 2.305�T�2.313 on a 96×192 grid. Abouhamza and Pierre obtained the Rec value
as 5567 when the number of elements were 3136 (d.o.f=12 546) and 5715 when 3600 elements
were used (d.o.f.=14 402). This clearly shows that insufficient grid checks were done to predict
the value of Rec accurately. Though the values of the time period for the number of elements
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Figure 26. Comparisons of simulations (top row) and global analysis predictions (bottom row) for one
period T in intervals of T/4 from left to right for aspect ratio A=2 and Re=5861 with M=501,N =161.

Contour levels are in intervals of 0.1, with negative levels shown by dashed lines.

mentioned above were found to be 2.023 and 2.015 and are in good agreement with Goodrich
et al., the accuracy of these values is again under question as they were obtained for only two
different grid sizes. Our studies also show that for A=2, unless a large number of eigenvalues
are computed the predicted frequencies from the global analysis can be inaccurate. Moreover, our
study emphasizes the importance of conducting independent simulations to confirm the predictions
from a global stability analysis.

The critical values being different for each of the values of the aspect ratio in this table can be
due to one of the following factors: grid checks, handling corner singularities, accurate computation
of base flow. In our study, we made the best efforts in meeting these requirements that led us to
calculate the critical values accurately for the different aspect ratios studied.
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6. CONCLUSIONS

A new numerical technique is used to analyze the stability of a two-dimensional, unsteady and
incompressible flow in the LDC of A=1.0, 1.5 and 2.0. It is found in all of these configurations
that flow loses stability to a Hopf bifurcation. We observe from our numerical experiments that
�(�c) is less sensitive with grid size when compared with Rec. Extrapolation of the obtained
numerical data estimated Rec to be 8020.1 for A=1.0, Rec=5332.1 for A=1.5 and Rec=5790
for A=2.0. Though the values of Rec do not agree with the literature for A=1.5 and 2.0, it is
found to be reasonably consistent with those reported in the literature for A=1.0 and is in excellent
agreement with our simulations of the linearized Navier–Stokes equations for all the aspect ratios
studied.

The authors would like to thank the referees for their helpful comments.
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